skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Xiaohao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Preserving the history of storage states is critical to ensuring system reliability and security. It facilitates system functions such as debugging, data recovery, and forensics. Existing software-based approaches like data journaling, logging, and backups not only introduce performance and storage cost, but also are vulnerable to malware attacks, as adversaries can obtain kernel privileges to terminate or destroy them. In this paper, we present Project Almanac, which includes (1) a time-travel solid-state drive (SSD) named TimeSSD that retains a history of storage states in hardware for a window of time, and (2) a toolkit named TimeKits that provides storage-state query and rollback functions. TimeSSD tracks the history of storage states in the hardware device, without relying on explicit backups, by exploiting the property that the flash retains old copies of data when they are updated or deleted. We implement TimeSSD with a programmable SSD and develop TimeKits for several typical system applications. Experiments, with a variety of real-world case studies, demonstrate that TimeSSD can retain all the storage states for eight weeks, with negligible performance overhead, while providing the device-level time-travel property. 
    more » « less